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NORMED BARELY BAIRE SPACES 

BY 

J. A R I A S  DE R E Y N A  

ABSTRACT 

We construct two prehilbertian Baire spaces whose product is not a Baire space. 

Although Oxtoby [4] and Aarts and Lutzer [1] have proved that the product of 

two Baire spaces is a Baire space under some mild additional conditions, it is 

well-known that, in the general case, this result does not hold. 

Using the continuum hypothesis, Oxtoby [4] has given the first example of a 

completely regular Baire space whose square is not a Baire space. More recently 

some examples of barely Baire spaces have been given without additional 

hypotheses. See [2], where there is a review of the history of the problem. 

All these examples are metric spaces but it was an open question if there are 

Baire locally convex vector spaces whose product is not a Baire space. For the 

related class of unordered Baire-like spaces, Todd and Saxon [5] have proved 

that every arbitrary product of unordered Baire-like spaces is unordered 

Baire-like. 

In this paper, using the technique of Fleissner and Kunen [2, example 1], we 

derive an example of two prehilbertian Baire spaces whose product is not a Baire 

space. 

We shall denote by l-~(toj) the Hilbert space of all scalar sequences 
(x~ : a  < to~) such that E . . . .  [x~ [2< +o0. 

For every x = (x. : a < too in l-~(to,), only countably many coordinates do not 

vanish, so that we can define f : /- ' ( to,)~ to, by 

f(x) = sup{a < to, :xo~  0}. 

Also for every natural number n _-> 1 we shall denote 

[. (x) = sup{a < tot :Ix.  I --> 1/n}. 

Received September  10, 1981 

33 



34 J. ARIAS DE REYNA Isr. J. Math. 

Then, for every x E/-'(to,), it is clear that 

f (x)  = supf,  (x). 

These functions verify the following conditions too: 

(a) If a < f(x), there exists a neighborhood V of x such that z in V implies 

f ( z ) >  a. 
(b) For every x E l-'(to,) and every natural number n => 1, there exists a 

neighborhood V. of x such that z in V. implies f. (z)  < f. (x). 

PROOF. (a) If a < f(x), then there exists /3, a </3 =< f(x), verifying x~ ~ 0. 

There is a n~ighborhood V of x such that z in V implies z~ ~ 0 and then z in V 

implies f (z ) >= /3 > a. 
(b) If x E 12(to~), then sup{Ix~ I : a  < to, and Ix~ I<  I / n } <  l/n, since x.--~0. 

Therefore  we can choose r > 0  such that I I x - y ] l < r  implies l y . l < l / n  

whenever [x~ 1< 1/n. So V, = {y : IIx - y II < r} satisfies (b). 

We shall denote by ~ the base for the topology of 12(to,) consisting of the open 

balls of rational radius and center (x~ : a < to~) such that {a E tol :[xo 1~ 0} is 

finite and every x~ is rational. 

For every 3 '<toJ,  let ~ be the subset of ~ of all balls with center 

(x~ : a  < to~) such that x~ = 0 if a => 3,. 

Before defining our space we need a lemma. 

LEMMA 1. There exists a dense linear subspace M of 12 that is a Baire space 
and does not contain any finite linear combination of basic vectors. 

PROOF. Let (a~ : a  < to 2) be a sequence of linearly independent vectors in 

L2[0, 1] such that, for every n < to, (aon+k : k < to) is an orthonormal basis of 

L2[0, 1]. For example, let (aon+k : k < to) be the only orthonormal basis such that 

ao~+k is the class determined by the function e"*pk(X), where pk(x) is a 

polynomial of degree k. 

We complete (a,  : a < toz) t~ construct a Hamel basis (a~ : ot < f~) of L2[0, 1]. 

Let V, (n < to) be the linear space spanned by the vectors a~ that are not 

contained in the orthonormal basis (a.~+~ : k < to). It is easy to see that every V, 

is dense in L2[0,1] and that L2[0,1] = U { v ~  :n  < toil. 

Since L2[0, 1] is a Baire space, we get that there exists a natural number q such 

that Vq is of second category in L2[0, 1]. Then Vq, being a dense linear subspace 

of second category in L2[0, 1], is a Baire space. 

Finally let T:L2[O, 1]---~I 2 be the bounded linear operator  defined by 

T(Ek<o, xka~+k) = (Xk :k  < to). It is clear that M = T(Vq) satisfies the lemma. 
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For  every  limit ordinal  T, 0 < 3, < to,, we fix an increasing sequence  of ordinals  

( a .  : n  < w) verifying that  s u p a .  = 3' and 3' \{a .  : n < to} is infinite. 

For  every  limit ordinal  3', O <  3' < to~, we deno te  by H~ the closed l inear 

subspace  of l-'(to~) f o rmed  by all sequences  (x~ : a  < too such that  x~ = 0  

wheneve r  a _-> 3' and we denote  by M~ the dense linear subspace  of all sequences  

(x~ : a  < to , )E  H~ satisfying (x~° : n < t o ) E  M, where  M is the space defined in 

L e m m a  1 and (a° : n < to) the sequence  associated with 3'. 

Since M,  is i somorphic  to M × l:, we get f rom the Ox toby  t h e o r e m  [4] that  M,  

is a Baire  space.  

For  every  A C to, consisting of limit ordinals  3', 3 ' # 0 ,  let A *  be the 

prehi lber t ian  linear subspace  of l-'(to,) spanned  by U { M ,  : 3, E A }. 

It  is clear that  M~ is conta ined  in A * for every  3' E A. Fu r the rmore ,  for  every  

x E A *, there  is a finite sequence  in A, y~ < 3'2 < • • • < 3',, verifying x = XT_~ xi 

where  x, E M,,. Clear ly f ( x )  = 3", by the definit ion of M,  and L e m m a  1. Thus  

f ( x ) i s i n  A if x is in A *  

LEMMA 2. I f  A is stationary, then A * is a Baire space. 

PROOF. If A is s ta t ionary,  sup A = to~, so that  A *  is dense in /-'(to1). Every  

dense open  subset  of A * is the intersect ion of a dense open  subset  D of 12(to,) 

and A * .  Hence  it suffices to p rove  that  ( N  D , ) N  G M A * # Q  for  every 

sequence  of open dense sets D,  in f2(tot) and every  n o n e m p t y  open  set  G in 

12(to,). 

Eve ry  open  dense  set D in 12(to,) induces a f u n c t i o n / ~  : ~ ~ ~ such that,  for  

every  B E ~ ,  we have / ) ( B ) C  B n D. Since every  ~ is countable ,  there  is 

/ ) ( a ) <  to~ such that  / ) ( B )  belongs to ~D~o) for every B E ~ .  

Let  J be  the set  of the functions /~.. By Kunen  [3, l emma  II.6.13], the set 

C = {3' < to~ : 3' is closed under  ~¢} is a closed unbounded  set of to~. 

Let  B be a subset  of G, B E ~ .  Pick 3' > a such that  ",i, E C A A. This  choice 

is possible since A is s ta t ionary.  

Since 3' is closed u n d e r / ) . ,  we have that  D .  M H~ is an open  dense set in H~. 

Since 3" > a,  G M H~ is a n o n e m p t y  open  set  of H~. Since M~ is dense  in H ,  and 

M~ is a Baire  space,  we get that  ( N  D . ) M  G M M ~ O .  

LEMMA 3. I f  Ao, A~ are dis]oint stationary sets of  to,, then A * × A * is not a 

Baire space. 

PROOF. Def ine  

D .  = {(x, y )  ~ 12(to,) × 12(~o,) : m i n ( f ( x ) , f ( y ) )  > max(f ,  ( x ) , f ,  (y))}. 
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D, is open: Let ( x , y ) E D , .  There exist neighborhoods Vx, Vr of x and y 

respectively satisfying that if (u ,v)  belongs to V x x V y ,  then f ( u ) >  

max(f. (x), f. (y)), f Iv) > max(f. Ix), f. (y)), fn (u) =< f. Ix), and f. (v) =< f. (y), so 

that if ( u , v ) E  Vx × Vy, then m i n ( f ( u ) , f ( v ) ) > m a x ( f . ( u ) , f . ( v ) ) .  

D. is dense: For (x, y) ~ 1-'(0o~) × 12(w,) choose a such that max( f (x ) , f ( y ) )  < 

a < oJi. Denote by e~ the sequence (8~ :/3 < ~oj)E l'-(w~) where 8~ = 1 and 

~ = 0 if/3 ~ a. Then, for every t, 0 < t < 1/n, we have (tea + x, te~ + y) belongs to 

D,,. 

Finally we shall prove ( n D.)  n (A * × A *) = O. If (x, y) is in A * × A '~, then 

f (x) is in A,, and f (y )  is in A j. Since Ao n A ,  = f~, f ( x )  ~ f(y) .  There is no loss of 

generality to assume that f ( x ) > f ( y ) ,  thus there is a natural number n => 1 

satisfying f. (x) > f(y) .  Hence (x, y) ~ D.. 

THEOREM 1. There is a family {A * : a < oJ,} of different subspaces of 12(o~,) 

which are Baire spaces and such that A * × A *~ is not a Baire space whenever 

The proof follows from the lemmas and the classical result of Ulam (see 

Kunen [3, theorem 11.6.11]) that proves that there are o~ stationary disjoint 

subsets of ~o~. 
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